Precise Estimates for the Subelliptic Heat Kernel on H-type Groups
نویسنده
چکیده
We establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie groups G of H-type. Specifically, we show that there exist positive constants C1, C2 and a polynomial correction function Qt on G such that C1Qte − d2 4t ≤ pt ≤ C2Qte d2 4t where pt is the heat kernel, and d the Carnot-Carathéodory distance on G. We also obtain similar bounds on the norm of its subelliptic gradient |∇pt|. Along the way, we record explicit formulas for the distance function d and the subriemannian geodesics of H-type groups. On donne des estimations précises des bornes supérieures et inférieures du noyau de la chaleur souselliptique sur les groupes de Lie nilpotents G de type H. Plus précisément, on montre qu’il existe des constantes positives C1 et C2, et une fonction polynomiale corrective Qt sur G telles que C1Qte −d 4t ≤ pt ≤ C2Qte d2 4t , où pt est le noyau de la chaleur, et d est la distance de Carnot-Carathéodory sur G. On obtient aussi des estimations similaires pour la norme du gradient |∇pt|. En passant, on donne aussi des formules explicites pour la distance d et les géodésiques sous-riemannienes sur les groupes de type H.
منابع مشابه
Gradient Estimates for the Subelliptic Heat Kernel on H-type Groups
We prove the following gradient inequality for the subelliptic heat kernel on nilpotent Lie groups G of H-type: |∇Ptf | ≤ KPt(|∇f |) where Pt is the heat semigroup corresponding to the sublaplacian on G, ∇ is the subelliptic gradient, and K is a constant. This extends a result of H.-Q. Li [10] for the Heisenberg group. The proof is based on pointwise heat kernel estimates, and follows an approa...
متن کاملQuasi-invariance for Heat Kernel Measures on Sub-riemannian Infinite-dimensional Heisenberg Groups
We study heat kernel measures on sub-Riemannian infinitedimensional Heisenberg-like Lie groups. In particular, we show that Cameron-Martin type quasi-invariance results hold in this subelliptic setting and give L-estimates for the Radon-Nikodym derivatives. The main ingredient in our proof is a generalized curvature-dimension estimate which holds on approximating finite-dimensional projection g...
متن کاملA Subelliptic Taylor Isomorphism on Infinite-dimensional Heisenberg Groups
Let G denote an infinite-dimensional Heisenberg-like group, which is a class of infinite-dimensional step 2 stratified Lie groups. We consider holomorphic functions on G that are square integrable with respect to a heat kernel measure which is formally subelliptic, in the sense that all appropriate finite dimensional projections are smooth measures. We prove a unitary equivalence between a subc...
متن کاملThe Heat Kernel for H-type Groups
Theorem 1 gives an explicit formula for the heat kernel on an H -type group. Folland (2] has shown that for stratified nilpotent Lie groups the heat semigroup is a semigroup of kernel operators on LP, 1 5 p < oo and on Co. Cygan (1] has obtained formulas for heat kernels for any two step nilpotent simply connected Lie group. Cygan found the heat kernel for a free simply connected two step nilpo...
متن کاملVaradhan estimates in semi-group theory: upper bound
We translate in semi-group theory our proof of Varadhan estimates for subelliptic Laplacians which was using the theory of large deviations of Wentzel-Freidlin and the Malliavin Calculus of Bismut type. Key–Words: Large deviations. Subelliptic estimates.
متن کامل