Precise Estimates for the Subelliptic Heat Kernel on H-type Groups

نویسنده

  • Nathaniel Eldredge
چکیده

We establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie groups G of H-type. Specifically, we show that there exist positive constants C1, C2 and a polynomial correction function Qt on G such that C1Qte − d2 4t ≤ pt ≤ C2Qte d2 4t where pt is the heat kernel, and d the Carnot-Carathéodory distance on G. We also obtain similar bounds on the norm of its subelliptic gradient |∇pt|. Along the way, we record explicit formulas for the distance function d and the subriemannian geodesics of H-type groups. On donne des estimations précises des bornes supérieures et inférieures du noyau de la chaleur souselliptique sur les groupes de Lie nilpotents G de type H. Plus précisément, on montre qu’il existe des constantes positives C1 et C2, et une fonction polynomiale corrective Qt sur G telles que C1Qte −d 4t ≤ pt ≤ C2Qte d2 4t , où pt est le noyau de la chaleur, et d est la distance de Carnot-Carathéodory sur G. On obtient aussi des estimations similaires pour la norme du gradient |∇pt|. En passant, on donne aussi des formules explicites pour la distance d et les géodésiques sous-riemannienes sur les groupes de type H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Estimates for the Subelliptic Heat Kernel on H-type Groups

We prove the following gradient inequality for the subelliptic heat kernel on nilpotent Lie groups G of H-type: |∇Ptf | ≤ KPt(|∇f |) where Pt is the heat semigroup corresponding to the sublaplacian on G, ∇ is the subelliptic gradient, and K is a constant. This extends a result of H.-Q. Li [10] for the Heisenberg group. The proof is based on pointwise heat kernel estimates, and follows an approa...

متن کامل

Quasi-invariance for Heat Kernel Measures on Sub-riemannian Infinite-dimensional Heisenberg Groups

We study heat kernel measures on sub-Riemannian infinitedimensional Heisenberg-like Lie groups. In particular, we show that Cameron-Martin type quasi-invariance results hold in this subelliptic setting and give L-estimates for the Radon-Nikodym derivatives. The main ingredient in our proof is a generalized curvature-dimension estimate which holds on approximating finite-dimensional projection g...

متن کامل

A Subelliptic Taylor Isomorphism on Infinite-dimensional Heisenberg Groups

Let G denote an infinite-dimensional Heisenberg-like group, which is a class of infinite-dimensional step 2 stratified Lie groups. We consider holomorphic functions on G that are square integrable with respect to a heat kernel measure which is formally subelliptic, in the sense that all appropriate finite dimensional projections are smooth measures. We prove a unitary equivalence between a subc...

متن کامل

The Heat Kernel for H-type Groups

Theorem 1 gives an explicit formula for the heat kernel on an H -type group. Folland (2] has shown that for stratified nilpotent Lie groups the heat semigroup is a semigroup of kernel operators on LP, 1 5 p < oo and on Co. Cygan (1] has obtained formulas for heat kernels for any two step nilpotent simply connected Lie group. Cygan found the heat kernel for a free simply connected two step nilpo...

متن کامل

Varadhan estimates in semi-group theory: upper bound

We translate in semi-group theory our proof of Varadhan estimates for subelliptic Laplacians which was using the theory of large deviations of Wentzel-Freidlin and the Malliavin Calculus of Bismut type. Key–Words: Large deviations. Subelliptic estimates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009